Recognition of handwritten numerals using RBF-SVM hybrid model

نویسنده

  • Muthukumarasamy Govindarajan
چکیده

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. This paper addresses using an ensemble of classification methods for recognizing totally unconstrained handwritten numerals. Due to a great variety of individual writing styles, the problem is very difficult and far from being solved. In this research work, new hybrid classification method is proposed by combining classifiers in a heterogeneous environment using arcing classifier and their performances are analyzed in terms of accuracy. A classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM). Here, modified training sets are formed by resampling from original training set; classifiers constructed using these training sets and then combined by voting. Empirical results illustrate that the proposed hybrid systems provide more accurate handwriting recognition system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zone Based Feature Extraction Techniques For Bangla Numerals Recognition

This paper proposed a methodology for Handwritten Bangla numerals Recognition using zone based Feature Extraction Techniques. Every numeral image is pre-processed, segmented and feature are Extracted from each zone. In this paper we present, three zone based feature extraction techniques which is namely: image Centroid zone(ICZ), zone centroid zone (ZCZ) and hybrid feature extraction techniques...

متن کامل

Automatic Recognition of Off-line Handwritten Arabic (Indian) Numerals Using Support Vector and Extreme Learning Machines

This paper describes a technique using Support Vector (SVM) and Extreme Learning Machines (ELM) for automatic recognition of off-line handwritten Arabic (Indian) numerals. The features of angle, distance, horizontal, and vertical span are extracted from these numerals. The database has 44 writers with 48 samples of each digit totaling 21120 samples. A two-stage exhaustive parameter estimation t...

متن کامل

Recognition of unconstrained handwritten numerals by a radial basis function neural network classifier

Among the neural network models RBF(Radial Basis Function) network seems to be quite effective for a pattern recognition task such as handwritten numeral recognition since it is extremely flexible to accommodate various and minute variations in data. Recently we obtained a good recognition rate for handwritten numerals by using an RBF network. In this paper we show how to design an RBF network ...

متن کامل

A Novel Approach to Recognize the off-line Handwritten Numerals using MLP and SVM Classifiers

This paper presents a new approach to off-line handwritten numeral recognition. Recognition of handwritten numerals has been one of the most challenging task in pattern recognition. Recognition of handwritten numerals poses serious problems because of high variability in numeral shapes written by individuals. This paper concerns with offline handwritten numeral recognition based on MLP and SVM ...

متن کامل

Evaluation of Ensemble Classifiers for Handwriting Recognition

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed for homogeneous ensemble classifiers using bagging and heterogeneous ensemble classifiers using arcing classifier and their performa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2016